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NONLINEAR DYNAMICS IN NUCLOTRON

D.Dinev*

The paper represents an extensive study of the nonlinear beam dymanics in the Nuclotron.
Chromatic effects, including the dependence of the betatron tunes on the amplitude, and chro-
matic perturbations have been investigated taking into account the measured field imperfec-
tions. Beam distortion, smear, dynamic aperture and nonlinear acceptance have been calculated
for different particle energies and betatron tunes.

The investigation has been performed at the Laboratory of High Energies, JINR.

HennHeliHas THHAMHKA B HYKJIOTPOHe

. Qunee

TIpencTaBieHO CHCTEMATHYECKOE HMCCNENOBAHHE HENUHEHHON AMHAMHKH B HYKJIOTpOHe.
Xpomariueckue 3hEKTHI, B TOM YHCIE 3aBHCHMOCTh GETATPOHHLIX YaCTOT OT AMIUTHTYAbI, U
XpOMAaTHYECKHE NEPTypOalliy HCCENOBaHbI, yYHTHIBAA BKIIAN NOTPEUIHOCTEH MATHUTHOTO MO,
Hedopmauus orubalomed nyuxka, smear, IUHaMHYeCKasd anepTypa M HeJMHEHHbIA aKCenTaHe
BBIYMCIIEHBI B 3aBHCHMOCTH OT BHEPTHH HaCTHIl H GETATPOHHBIX YaCTOT.

Patora srmonnena B JlaGopatopur BEICOKHX 3Hepruit OUSTH.

1. Introduction

In a real circular accelerator the focusing magnetic fields in the quadrupole lenses and
the bending magnetic fields in the dipole magnets are far from being perfectly linear. There
exist high order multipole components of these fields arising from fabrication tolerances.

In superconducting magnets the strongest nonlinear field distortions are due to persist-
ent eddy currents in the magnet filaments. In dipole magnets persistent currents excite all
multipoles but the sextupole component is prevalent.

On the other hand, the accelerated beam is not monoenergetic. The accelerated particles
cover a range of energies (momenta). In Nuclotron the relative momentum spread is
Ap/p=+% 41073 at injection energy and Ap/p =+ 8:10™ at maximum energy. This fact
has as a result different kind of chromatic effects — a shift of betatron tunes (the so-called

chromaticity) with particle energy and beam envelope distortions (the so-called chromatic
perturbations).
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Besides this, a dependence of the betatron tunes on the amplitude of oscillations ap-
pears in multipolar magnetic fields.

In addition to the random and systematic field errors sextupole lenses with purely
nonlinear magnetic fields are intently placed in any circular accelerator to control the chroma-
ticity.

In superconducting accelerators the sextupole correctors are of less importance for the
nonlinear character of the particle motion. The superconducting accelerators are said to be
«error dominated» machines what means that the systematic and random field errors in the
magnets are the most important source of nonlinearities.

The paper represents an extensive study of the nonlinear dynamics in the Nuclotron.
The data from measurement of magnetic field imperfections in dipoles and quadrupoles up
to 6th order (systematic and random; normal and skew) have been used for this inves-
tigation {2].

2. Chromatic Effects

Even in perfectly linear accelerator the parameters of the particle motion depend on the
energy (momentum). Between these dependences the most important is the dependence of
the frequency of betatron oscillations on momentum, the so-called natural chromaticity [3].
The natural chromaticity is defined as:

Y _dp
Q =5 &= ' (H
Q being the betatron tune.

We calculated the natural chromaticity in the Nuclotron taking into account the in-
fluence of the accelerator dipoles. For small machines with relatively small bending radius
p (or the same magnitude as the dispersion D)) this influence is essential (up to 100%),
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We calculated Q)’c and Q; by numerically integrating (2). The obtained values are given
in Table 1.
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Table 1

Parameter Value
Natural chromaticity

o - 1.735

Qy' - 17.937
Chromaticity at Bp = 1.0 Tm
(systematic errors in dipoles)

o - 10.206

Q; - 5.346
Chromaticity at Bp = 45.83 Tm
(systematic errors in dipoles)

0, 4.889

Q; —22.398

There are two main negative effects of the chromaticity:

a) A spread of the betatron tunes AQ appears and as a result the beam occupies an area
in the tune diagram instead of a point. The particles with energy different from the energy
of the equilibrium particle fall in the resonance stopbands and are lost.

b) For bunched beams the transverse head-tail instability is developed.

As at injection (Bp = 1.0 Tm) the relative momentum spread is & = + 4-10~, the cor-
responding tune spread is:

AQ =%0.04, AQy =+ 0.02.

At maximum energy (Bp = 45.83 Tm) the relative momentum spread is § = + 8107
and therefore the spread in the betatron tunes is:

AQ =+0.004, AQ =008,

We must underline that the criteria for linearity of the accelerator adopted after a large
number of theoretical and experimental investigations on a big number of machines is
AQ < 0.005. Therefore the chromaticity in the Nuclotron must be corrected.

Two families of sextupole lenses are available in the Nuclotron for correction of
chromaticity. They are placed just before the focusing and defocusing quadrupoles in the
strait sections of each superperiod.

The tune shift produced by these sextupole lenses is given by!
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where K’ = B—p i Zy is the sextupole strength, D_is the dispersion and L is the accelerator
by

circumference.
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Table 2

B” Value, T/ m?
Without errors

SF ‘ 1.50

SD -2.55
With systematic errors in dipoles
at Bp = 1.0 Tm

SF 1.74

SD -2.05
With systematic errors in dipoles
at Bp = 45.83 Tm

SF 8.27

SD — 249.37

We have calculated numerically the strengths of the sextupole correctors from (2)
taking into account the chromaticity levels in Table 1. They are given in Table 2.

In the presence of sextupole fields, a dependence of the betatron tunes on the amplitude
of oscillations appears. The perturbation theory gives [4]:
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Octupole fields also give such a dependence of the tunes on the amplitude. In this case
the perturbation theory gives [5]:
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We have calculated the dependence of betatron tunes in the Nuclotron on amplitude
numerically integrating the above equations. The results obtained (Bp = 1.0 Tm) are:

AQ"=1014 A—QX——124 %—é&ﬂm
de_ o dev_ - dsv_det""
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Taking into account that the emittances at Bp = 1.0 Tm are €, =¢ = 30.10% m we

receive the following tune shifts:

, AQ =310, AQ, = - 0.3-107>.
These are small values. v
Another important chromatic effect are the chromatic perturbations. By chromatic per-

turbations we imply here the change of the linear optics functions beta and alpha with the

. energy.

Following Montague [6] we will describe the chromatic perturbations by the functions:

]

VB(3) B(0)
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It can be shown that the vector
W =(B, A) &)

rotates with a frequency 2Q in the achromatic areas.
In thin quadrupole

AB=0, AA =-B(KL)S. (10)
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Fig.1. Montague chromatic functions
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Table 3
Max. Montague chr. functions Value
Without errors
Wx, max 1.68
1.68
¥, max
Bp = 1.0 Tm, systematic errors
in dipoles
Wx' max 13.18
w 9.85
y, max
Bp =45.83 Tm, systematic errors
in dipoles
25.88
X, max
42.38
y, max
In thin sextupole
AB=0, AM=-BK’'L)S. (1

We have calculated numerically the Montague functions using these properties. The
calculated functions for maximum energy are plotted on Fig.1.

The maximum lengths of the vector W taking into account the magnet imperfections are
summarised in Table 3.

The maximum relative chromatic error in the amplitude function B(s) taking into
account the systematic errors in the dipoles at Bp = 1.0 Tm is:

AB/B=%6%
and at Bp =45.83 Tm:
AB/B =% 4%.

3. Beam Distortion

The Hamiltonian approach is the most convenient treatment of the nonlinear beam
dynamics in circular accelerators. The Hamiltonian of a machine with nonlinearities can be
written in the form [8]:

H(x, 2, p,.p)=Hyx 2, p.p)+ 2, HVx 2, p,.p), (12)
N>2

where x and z are transverse particle coordinates, p, and p, are the corresponding conjugate
momenta, 6 is the particle azimuth which is taken here as independent variable instead of the
time, H, is the linear Hamiltonian and H ™ is the Hamiltonian of a nonlinearity of order N
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2 JB
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In (13) R is the mean radius of the accelerator, Bp is the beam rigidity which is
determined by the equilibrium particle momentum through: '

p = eBp, (14)
k k
H(N)= Z kaxlzz, (15)
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The corresponding Hamilton equations of motion are highly nonlinear in the general
case and the transverse degrees of freedom are coupled. That is why analytical solutions
exist only in some particular cases.

Several approximate analytical and numerical methods for treatment of the nonlinear
beam dynamics in circular accelerators have been developed and successfully applied in
practice. We have used two of them, namely the T.Collins analytical method of distortion
fuctions and the numercial method of particle tracking.

In a perfectly linear accelerator the particles occupy the volume of a 6-dimensional
ellipsoid in the 6-dimensional single particle phase space. As in the linear case the motions
in both the transverse directions x and z and in the longitudinal direction s are decoupled,
the 6-dimensional phase space is transformed to three independent phase planes: (x, p)

(z, p.) and (B, Pg), 8 =5/R being the azimuth. The area occupied by the particles in each

phase plane is confined by an ellipse. This ellipse is invariant of the motion (Courant—
Snyder invariant) which means that if a particle lies on the ellipse after one turn, it will lie
again on the same ellipse.

In the machine with nonlinearities the beam profile is not so simple as the horizontal
and the vertical motions are coupled. The particles move on a distorted surface in four
dimensional transverse phase space, the so-called «hyper-egg». We can talk only about the
projections of this hyper-egg onto the two transverse phase planes (x, p) and (z, pz). These
projections are no longer clean curves but bands.

T.Collins [9] has shown that for sufficiently weak sextupole or octupole nonlinearities
the beam distortion will be linear or quadratic function of the strengths of the nonlinearities.
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Fig.2. Beam distortion, Bp = 45.83 Tm

He devised a set of closed, i.e., periodic functions, the so-called distortion functions. These
functions are independent of the beam amplitude and depend only on the linear lattice
properties and the strengths of the nonlinearities. They are nonlinear analogues to the beta-
functions and alpha-functions of the linear theory.

With the help of the distortion functions we can construct an invariant beam shape for
the nonlinear case. This shape is mapped back in its turn if we use only terms of the first
order in the sextupole and octupole strengths. If the second order terms are used,the beam
shape will be distorted still further but the new invariant beam shape can be calculated
through the second order distortion functions.

In this way a self-consistent result for the shape in a single particle phase space is
developed order by order in the nonlinearities strengths just as in the perturbation theory.

T.Collins has shown that all the important effects of nonlinear fields can be derived
from the set of distortion functions including the betatron tune shifts AQX and AQZ with the
amplitude of the oscillations.

We will not reproduce here the explicit expressions for the distortion functions (there
are only five such functions for the normal sextupoles) but will turn our attention to a
discussion of the results obtained for the Nuclotron applying this method.

Figure 2 shows the beam distortion at Bp = 45.83 Tm.

The beam envelope is not a clean curve but a band as this is the projection of the
squashed hyper-egg in the four dimensional transverse phase space onto the phase plane.
The width of the distortion figure is a measure for the deviation of the accelerator from the
linear machine. The figure of merit is called SMEAR and is defined through:
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SMEAR=%%2, A=\/A§+Af, 17

where Ax and AZ are the horizontal and vertical amplitudes, ¢ denotes the standard deviation

and { ) — the mean value. . .
For Nuclotron we have calculated that SMEAR = 5.3% at the working point Q =638

and QZ = 6.85. This is a rather small value. It was decided (SSC, LHC, HERA) that if
SMEAR < 6.4%, the machine is considered to be sufficiently linear.

4. Dynamic Aperture

One of the most important characteristics of the circular accelerators is the dynamic
aperture [10]. By definition the dynamic aperture is the area of the single particle phase
space in which the particle motion is stable. It is a well-known fact that in presence of
nonlinear fields the single particle phase space structure gets quite complicated and is
divided to areas of stable and unstable motion.

It is very important for one to know how much of the phase space is stable. If this
stable area is not large enough the normal operation of the machine might be destroyed.

In case a particle is injected into the accelerator with initial coordinates outside the
dynamic aperture, the trajectory of that particle will be unstable and finally it will be lost
on the vacuum chamber walls,

As it has been mentioned in chapter 1 no analytical solutions of the equations of motion
in the general case of nonlinear magnetic fields have been found. That is why a quite
straightforward numerical approach for calculation of dynamic aperture has been develo-
ped — the method of particle tracking [11].

The method consists of launching a particle into the accelerator with given initial

coordinates and traking its motion for several hundreds turns (or even up to 108 turns) in
order to determine whether the particle trajectory is stable.

The problems arising from the nonlinearities are solved in the following way [11]. We
consider the particle motion in dipoles and quadrupoles purely linear not taking into ac-
count the multipole components of the fields. The nonlinearities are simulated by attaching
a nonlinear lens at the end of each dipole and quadrupole. These nonlinear lenses are
described in «impulsive» or «kick» approximation which means that we consider the
lengths of the lenses L — 0 while the lenses strengths Bn —> oo, but Lb,l — finite constant,

or in other words we take the field distribution in the nonlinear lenses as a 8-function of
the longitudinal coordinate. In this approximation the transverse particle coordinates x, z
keep constant when we cross the lens while the particle slopes x’, 2’ jump to new values —
the so-called «kicks».

In the particle tracking treatment of the nonlinear problem we obtain the dynamic
aperture as the maximum amplitude of a probe particle for which the trajectory is stable
over a given number of turns. It has been noticed that the dynamic aperture defined that
way depends rather strongly on the initial phase of the particle [12]. That is why many
particles with different initial phases should be tracked in order to obtained the real
dynamic aperture.
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Fig.4. Dynamic aperture and nonlinear acceptance for Bp = 45.83 Tm

Due to the limited computer power the number of tracked turns in our calculations was
set to 500, which is a commonly used value. The dynamic aperture calculated for such a
low number of turns is referred as short-term dynamic aperture.
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Fig.5. Dependence of the nonlinear acceptance on particle momentum

One should distinguish between the area of stable motion obtained with imposing of
aperture limitation representing the real vacuum chamber sizes and without such limitations.
We will call the area of stable motion «nonlinear acceptance» in the first case preserving
the name «dynamic aperture» for the latter case when no real physical aperture but rather
artificial limiting value is used. In our numerical calculations we use an amplitude limit of
1 meter for obtaining the dynamic aperture and aperture limits of 0.04 m in quadrupoles
(radius) and of 0.056 m in dipoles (full poles gap) for obtaining the nonlinear acceptance.

Figure 3 shows the dynamic aperture and the nonlinear acceptance for the injection
energy E =12 MeV/A (Bp = 1.0 Tm) while Fig.4 shows all these for the maximum beam
energy £ =6 GeV/A (Bp = 45.83 Tm).

Figure 5 depicts the dependence of the nonlinear acceptance on the particle momentum
(energy).
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